Περιεχόμενο
Υπάρχουν πολύ λίγοι άνθρωποι που έχουν την έμφυτη ικανότητα να καταλάβουν τα μαθηματικά προβλήματα με ευκολία. Τα υπόλοιπα μερικές φορές χρειάζονται βοήθεια. Τα Μαθηματικά έχουν ένα μεγάλο λεξιλόγιο που μπορεί να γίνει σύγχυση καθώς όλο και περισσότερες λέξεις προστίθενται στο λεξικό σας, ειδικά επειδή οι λέξεις μπορούν να έχουν διαφορετικές έννοιες ανάλογα με τον κλάδο των μαθηματικών που μελετάται. Ένα παράδειγμα αυτής της σύγχυσης υπάρχει στη λέξη ζεύγος "οριοθετημένη" και "απεριόριστη".
Λειτουργίες
Η κύρια χρήση των λέξεων "bounded" και "unbounded" στα μαθηματικά εμφανίζεται με τους όρους "bounded function" και "unbounded function". Μια οριοθετημένη συνάρτηση είναι αυτή που μπορεί να περιέχεται από ευθείες γραμμές κατά μήκος του άξονα x σε ένα γράφημα της συνάρτησης. Για παράδειγμα, τα ημιτονοειδή κύματα είναι λειτουργίες που θεωρούνται οριοθετημένες. Ένας που δεν έχει μέγιστη ή ελάχιστη τιμή x, ονομάζεται απεριόριστος. Από την άποψη του μαθηματικού ορισμού, μια συνάρτηση "f" που ορίζεται σε ένα σύνολο "Χ" με πραγματικές / πολύπλοκες τιμές περιορίζεται εάν το σύνολο των τιμών περιορίζεται.
Χειριστές
Στη λειτουργική ανάλυση, υπάρχει μια άλλη χρήση για τους όρους "οριοθετημένος" και "απεριόριστος". Μπορείτε να έχετε περιορισμένους και απεριόριστους χειριστές. Αυτοί οι χειριστές είναι διαφορετικοί και συχνά δεν είναι συμβατοί με τον ορισμό των οριοθετημένων λειτουργιών. Από το Springer Online Reference Works Εγκυκλοπαίδεια των Μαθηματικών, ένας απεριόριστος χειριστής είναι μια χαρτογράφηση Α από ένα σετ Μ σε έναν τοπολογικό χώρο φορέα Χ σε ένα τοπολογικό χώρο φορέα Y έτσι ώστε να υπάρχει ένα οριοθετημένο σύνολο N ⊂ M του οποίου η εικόνα Α (Ν) ένα απεριόριστο σετ στο Y. "
Σκηνικά
Μπορείτε επίσης να έχετε ένα οριοθετημένο και απεριόριστο σύνολο αριθμών. Αυτός ο ορισμός είναι πολύ πιο απλός, αλλά παραμένει παρόμοιος με τα δύο προηγούμενα. Ένα οριοθετημένο σετ είναι ένα σύνολο αριθμών που έχει ένα άνω και κάτω όριο. Για παράδειγμα, το διάστημα [2,401] είναι μια οριοθετημένη ομάδα, επειδή έχει μια πεπερασμένη τιμή και στα δύο άκρα. Επίσης, θα μπορούσατε να έχετε ένα οριακό σύνολο αριθμών όπως αυτό: {1,1 / 2,1 / 3,1 / 4 ...}, Ένα απεριόριστο σύνολο θα είχε τα αντίθετα χαρακτηριστικά. τα ανώτερα και / ή τα κάτω όριά του δεν θα ήταν πεπερασμένα.
Εννοια
Στους τρεις πιο συνηθισμένους τρόπους χρήσης των όρων "οριοθετημένο" και "απεριόριστο" στα μαθηματικά, υπάρχουν μερικά κοινά χαρακτηριστικά που μπορούν να χρησιμοποιηθούν εάν συναντήσετε τον όρο σε ένα άγνωστο περιβάλλον. Γενικά, και εξ ορισμού, τα πράγματα που οριοθετούνται δεν μπορούν να είναι άπειρα. Ένα οριοθετημένο οτιδήποτε πρέπει να μπορεί να περιέχεται σε κάποιες παραμέτρους. Ανεξαρτησία σημαίνει το αντίθετο, ότι δεν μπορεί να περιοριστεί χωρίς να έχει ένα μέγιστο ή ελάχιστο άπειρο.